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Abstract 

In this study we conducted simulation analyses to evaluate the effectiveness of a multilevel 

item feature model (Park & Bolt, in press) as a basis for group-level diagnosis.  The model 

essentially attempts to explain DIF across groups in relation to item features that can then 

serve as a basis for group-level score profiles.  In order to understand the performance of 

the model as a function of item features and feature weights, three factors—level of feature 

confounding, feature effect variability, and the explanatory power of item features—were 

considered for simulation conditions.  The model was fit using a Markov chain Monte 

Carlo (MCMC) procedure implemented in WinBUGS, and the accuracy of item feature 

weights’ recovery was evaluated using biases and root mean squared errors (RMSEs).  

This study not only helped better evaluate the model’s performance under various 

conditions, but also sheds light on how to analyze group-level diagnostic assessment data 

more generally. 
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Multilevel IRT for group-level diagnosis 

 

Educational policies can benefit from an understanding of the cognitive strategies, 

knowledge states, or skill profiles that underlie student performances on an exam.  

Recently there has been growing interest in psychometric models that can lend insight into 

these more finely-grained aspects of student performances (Junker & Sijtsma, 2001).  

Most currently available cognitive diagnostic models are student-level models developed to 

account for individual examinee differences in cognitive strategies or skill profiles, whereas 

many educational tests (e.g., NAEP, TIMSS, PIRLS, PISA) are designed so as to enable 

comparisons between units at higher levels of the educational hierarchy (e.g., school, 

school district, state, or country level).  When inferences are made at these higher levels, it 

is usually undesirable to aggregate results from an individual-level model, as group-level 

inferences based on aggregated scores may result in erroneous interpretations (Snijders & 

Bosker, 1999; Raudenbush & Bryk, 2002).  The best use of such assessments will be 

achieved when statistical methodologies designed for inferences at the appropriate level(s) 

of comparison are used.  Recent advances in hierarchical modeling have successfully 

integrated item response theory (IRT) models to create a multilevel item response theory 
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(ML-IRT) modeling framework (Adams, Wilson, & Wu, 1997; Kamata, 2001).  Park and 

Bolt (in press) considered an item feature model (IFM) as an extension of ML-IRT model 

for performing group-level diagnosis.  The major goal of this study is to evaluate the IFM 

as an ML-IRT model for group-level diagnosis. 

In the IFM, the item’s content and cognitive features are studied as potential 

contributors to differential item functioning (DIF) across groups.  In a multilevel modeling 

framework, a common framework might entail a three-level model in which item responses 

are nested within students and students are nested within some higher order grouping units, 

such as schools.  Ability is assumed to vary both at the individual and group levels; item 

difficulty is assumed to vary only at the group level, with each item assumed to have the 

same difficulty parameter for examinees from the same group.  The objective in fitting the 

IFM is to investigate features that demonstrate variability across groups. 

The IFM can be viewed as an extension of the approach applied to the National 

Assessment of Educational Progress (NAEP) by Prowker and Camilli (2007).  Prowker 

and Camilli developed an item difficulty variation (IDV) model as an application of a 

generalized linear mixed model.  This model is characterized by allowing random effects 

for item parameters.  Items with substantial variability in difficulty are detected, and the 
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cause of variation can be interpreted using contextual factors, such as how well an item 

matches a state’s curriculum standards.  Like the IDV model, we assume that an item’s 

tendency to display DIF can provide diagnostic information of relevance for score reporting 

purposes.  Unlike the IDV model, however, our approach seeks to model DIF in relation to 

item characteristics that are explicitly added to the model to account for difficulty variation 

across countries and that are assumed to be of value for score reporting purposes. 

Park and Bolt (in press) fitted the IFM to the dataset sampled from the Trends in 

International Mathematics and Science Study (TIMSS), but did not conduct simulation 

analyses to evaluate parameter recovery or to study the performance of the model under 

different conditions.  In that study the IFM studied countries (as opposed to schools) as 

grouping units.  Since a primary purpose of the current study is to better understand the 

model’s performance with TIMSS, we will refer to the grouping units as “countries” 

recognizing the potential of applying the IFM using other types of grouping structures.  

Simulation analyses are naturally necessary to verify how well the IFM will perform under 

various conditions and to understand how various factors affect the performance of the IFM 

as an ML-IRT model.  Therefore, the simulation analyses will not only investigate how the 

IFM is affected by various aspects of the test and test items, but also examine how 
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successful the IFM is as an ML-IRT model for group-level diagnosis. 

 

Multilevel structure of the IFM 

A multilevel representation of the IFM results in a decomposition of item response 

variance across three levels, with repeated measures (items) nested within students, and 

students nested within countries.  The statistical representation of the model is as follows. 

At level 1: 
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     where Xijk= 1 denotes a correct response by student j from country k to item i, 

  θjk is the ability level of student j in country k, 

  bik is the difficulty parameter for item i, when administered to students in country k.  

At level 2: 

          ,jk k jkEθ μ= +  

       where μk denotes the mean ability level in country k, and 

     Ejk is assumed normally distributed with mean 0 and variance 2
kσ . 

Finally at level 3: 

        kk U+= 0γμ , 
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          , k = 1, …, K, where K is the number of countries, 1ik i kl il
l

b δ= +∑w q

0

       δi1 is the difficulty of item i for country 1 (a reference country), 

qil is an indicator variable indicating whether a given feature l (= 1, …, L) is associated 

with item i, and 

wkl are continuous variables identifying the effect of feature l on the difficulty of items 

within country k; 11 1, , Lw w =K . 

Note that the item difficulties within each country (except for the reference country) are 

defined relative to those of the reference country for statistical identification purposes and 

to ensure a comparable interpretation of θ across countries.  The model includes fixed 

effects associated with the overall ability mean across countries (γ0), and item difficulties 

for the reference country (δi1).  The wkl are (potentially random) effects associated with 

each attribute.  When normalized, these random effects are assumed to be normal with a 

mean of zero and estimated variance .  The U2
lτ k are assumed normally distributed with 

mean zero and variance . 2
0τ

The indeterminacy of the IFM can be resolved by assigning the difficulty 

parameters a mean of zero in a reference country.  Next, to make the θ metrics for other 

countries determinate, the item parameters for items of a particular type are assumed to be 
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invariant across countries.  These initial solutions are then normalized for interpretation.  

Figure 1 shows an illustration of the normalization procedure for 5 item features and 15 

countries.  See Park and Bolt (in press) for more details on identification of the model. 

------------------------------------- 

Insert Figure 1 About Here 

------------------------------------- 

 

MCMC Estimation 

The three-level IFM was fit to the TIMSS dataset using a Markov chain Monte 

Carlo (MCMC) procedure implemented in WinBUGS (Spiegelhalter, Thomas, Best, & 

Lunn, 2003).  This approach involves initial specification of the model and a prior for all 

model parameters.  Using a Metropolis-Hastings algorithm, WinBUGS then attempts to 

simulate draws of parameter vectors from the joint posterior distribution of the model 

parameters.  The success of the algorithm is evaluated by whether the chain successfully 

converges to a stationary distribution, in which case characteristics of that posterior 

distribution (e.g., the sample mean for each parameter) can be taken as point estimates of 

the model parameters.  In the current application, the following priors were chosen for the 

model parameters: 
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( )1,0~0 Nγ , ( )2
0 ~ Inverse Gamma 1, 1τ , , ( )2 ~ Inverse Gamma .5, .5kσ

( )10,0~1 Niδ , ( )10,0~ Nwkl ; 

where 0γ  is the overall ability mean across countries,  is the variance of 

country means (

2
0τ

kμ ),  is the variance of person abilities (2
kσ jkθ ) within country k, 1iδ  is 

difficulty parameter of item i for country 1 (reference country), and wkl is the random effect 

of country k for the feature l. 

In MCMC estimation, several additional issues require consideration in monitoring 

the sampling history of the chain.  WinBUGS, by default, will use an initial 4,000 

iterations to “learn” how to generate values from proposal distributions to optimize 

sampling under Metropolis-Hastings.  An additional 1000 iterations were thus used as a 

“burn-in” period, and the subsequent 10,000 iterations were then assumed to represent a 

sample from the joint posterior, and inspected for convergence using visual inspection as 

well as convergence statistics available in CODA (Best, Cowles, & Vines, 1996). 

 

Simulation Conditions 

The simulation conditions manipulated in this study were as follows.  First, 

different levels of feature confounding were varied.  As item features that may contribute 
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to DIF frequently correlate, as appears to be the case with TIMSS, for example (Martin, 

Mullis, & Chrostowski, 2004), it is worth studying how different levels of such 

confounding affect recovery of the feature effect parameters.  Second, different levels of 

variability of feature effects across countries are considered.  It may naturally be expected 

that certain item characteristics will more likely relate to DIF than others.  Third, the 

explanatory power of item features in explaining residual variability of item difficulties for 

the comparison countries is simulated.  Systematic variability of item difficulties for the 

comparison countries with respect to the reference country is accounted for by the item 

feature incidence (Q) and item feature effects (W) matrices.  To make the simulation data 

more plausible, additional random variability unrelated to the features should be introduced.  

The amount of DIF attributable to the features can be captured by R2 statistics, where the 

features are used as regressors.  Two levels of R2 were considered (.7 and .3) representing 

large and small residual variances. 

Levels of feature confounding.  Three levels of confounding among features were 

considered (see Table 1).  The level of confounding was studied using the Jaccard index of 

similarity for binary variables, here applied to columns of the Q matrix.  Jaccard’s index 

of similarity is a measure of association between two binary features, and is defined as the 
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ratio of the total number of observations (items in this case) where the feature is present for 

both items to the total number of items where the features are present for at least one item.  

The Jaccard index ranges from zero to one, where one indicates that one feature is present 

whenever the other feature is present, and zero indicates that whenever one feature is 

present, the other is not present. 

Three conditions manipulating the Jaccard index were considered.  First, all five 

features (q1 through q5) were considered as highly distinct, implying minimal confounding 

of features; that is, the Jaccard index was zero for every pair.  This condition simulates the 

situation where each item is assigned one and only one feature.  The second condition 

introduces a medium confounding between any two of the features (Jaccard index = .33), 

which is held constant across all pairs.  Finally, for a third condition one pair of features 

has a high level of confounding, while the other features have lower levels of confounding.  

The upper triangular portions of the Jaccard index matrices for the three conditions are 

shown in Table 1. 

------------------------------------- 

Insert Table 1 About Here 

------------------------------------- 

Variability of feature effects across countries.  Five conditions were considered in 



  Group-Level Diagnosis 12

manipulating the W matrix.  The number of features having large variability (i.e., the 

standard deviation of effects across countries is larger than .6) was varied from one through 

five, while all other features had small variability (i.e., the standard deviation of effects 

across countries is smaller than .2).  Since normalized results are presented for 

interpretation, all of the row sums and column sums add up to zero in these W matrices, and 

all effects should be interpreted in a relative sense.  The five conditions for variability of 

feature effects are illustrated in Table 2. 

------------------------------------- 

Insert Table 2 About Here 

------------------------------------- 

Explanatory power of item features in explaining between-country DIF.  As noted, when 

simulating data, the item difficulties for the countries relative to the reference country are 

determined by the Q and W matrices, allowing the item difficulties for the reference 

country to define difficulties against which those of comparison countries are compared.  

The explanatory power of the Q and W matrices can be manipulated by introducing a 

residual to the difficulty parameters of items for all comparison countries.  By 

manipulating the variance of this residual, we can control how much of the variance in item 

difficulty for the comparison countries is explained by the specified features (R2 = .7 vs. R2 
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= .3).  For example, when the variance of item difficulties for a fixed item across countries 

is .5, then the residuals of the item difficulties were generated from normal distributions 

having a mean of zero and variances of .21 and 1.17, producing R2 values of 

approximately .7 and .3, respectively. 

 

Data 

The numbers of items and countries were fixed at 99 and 15, respectively, which 

provided the same condition as a previous real data study applied to TIMSS (Park & Bolt, 

in press).  500 examinees were used for each country.  The number of examinees was 

reduced from the real data study (where 1,000 were sampled per country) due partly to 

relieve computational burden and also to reflect the matrix sampling design of the real data.  

Although 1,000 examinees were randomly sampled from each country, the selected 

examinees answered only a subset of the 99 items, and 500 examinees for each country 

seem reasonable.  The number of item features was fixed at 5.  Therefore, the Q matrix 

had a dimension of 99 by 5, and the W matrix had a dimension of 5 by 15.  Using these 

fixed dimensions, the aforementioned three conditions were manipulated—confounding 

level in Q matrix, variability of feature weights, and the explanatory power of the features 
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in explaining variability in the item difficulties.  Steps to generate item difficulties for the 

countries are illustrated in Figure 2.  All simulated factors were fully crossed.  Overall, 

therefore, 30 conditions were simulated, and five replications were conducted per 

combination of factor conditions.  Although the number of replications may seem low, 

each condition results in 75 (15 times 5) unique elements in the W matrix; as a result, there 

were a large number of feature weight values generated across replications. 

------------------------------------- 

Insert Figure 2 About Here 

------------------------------------- 

 

Results 

All MCMC analyses were conducted on the simulated datasets using the 

WinBUGS program developed by Park and Bolt (in press).  Visual inspection of the chain 

histories and R-hat statistics suggested by Gelman and Rubin (1992) supported chain 

convergence.  Recovery of item feature weights was of primary concern, and the recovery 

was evaluated using biases and root mean squared errors (RMSEs), which were calculated 

using the following formulas: 
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( ) ( )∑ −
=

75
ˆ wwwBias , 

( ) ( )∑ −
=

75
ˆ 2wwwRMSE . 

Table 3 shows the bias of estimated item feature effects across all conditions 

averaged over replications.  The mean bias across all simulation conditions considered in 

this study is effectively zero.  It may thus be concluded that MCMC estimators of item 

feature effects provide unbiased estimates in various conditions when fitting the IFM.  The 

RMSEs of the item feature effects averaged over replications show how accurately 

parameters were recovered for the simulation conditions (Table 4).  The pattern of RMSE 

changes is more easily detectable when graphically displayed.  Figures 3 and 4 show how 

RMSEs change as the number of features having large variability increases from one 

through five for different levels of feature confounding when the R2 values are .7 (Fig. 3) 

and .3 (Fig. 4), respectively. 

------------------------------------------ 

Insert Tables 3 and 4 About Here 

------------------------------------------ 

The difference between the larger explanatory power (R2 = .7; Fig. 3) and the 

smaller explanatory power (R2 = .3; Fig. 4) conditions is most noticeable when the features 
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are not confounded at all.  When the explanatory power is high, the no confounding 

condition produced substantially lower RMSEs when compared to the other confounding 

conditions; however, when the explanatory power is low, the no confounding condition 

produced noticeably higher RMSEs and the increase was shaper as the number of features 

having large variability increased.  Except for the no confounding condition, the pattern of 

change and the range of values were similar for the two explanatory power conditions.  

RMSEs tended to increase as the number of features having large variability increased; 

however, the increase was more noticeable when the item features were not confounded, 

especially the explanatory power was low (R2 = .3). 

------------------------------------------ 

Insert Figures 3 and 4 About Here 

------------------------------------------ 

Among the three simulation factors, the most conspicuous changes were due to 

different confounding levels.  An increased level of confounding substantially increased 

RMSEs across all variability of feature conditions when the explanatory power was large.  

When the R2 value was .3, on the other hand, the effects of medium or high level of feature 

confounding were not as apparent as when the R2 value was .7.  The no feature 

confounding condition did not show much advantage over the other confounding conditions 
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as the number of features having large variability increased when the explanatory power 

was low.  Still, feature confounding level is overall the most significant factor among the 

simulation factors considered in this study. 

In summary, an increased level of confounding substantially deteriorated the 

recovery of item feature effects as shown in RMSE increases in almost all conditions.  

Also, RMSEs increased as the more features had large variability, and this pattern was more 

easily detectable when the features were not confounded, even more so when the 

explanatory power was low.  The level of explanatory power (different R2 values) did not 

cause big changes except when the features were not confounded.  Among the three 

simulation factors considered in this study—confounding level in Q matrix, variability of 

feature effects, and the explanatory power of the features in explaining variability in DIF—

confounding level in Q matrix tended to cause the largest changes in RMSEs. 

 

Discussion and conclusion 

This study conducted simulation analyses for various test conditions that were 

expected to impact use of the IFM.  The IFM is a model that decomposes the sources of 

DIF with respect to a priori specified item features.  We manipulated various conditions 
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for the Q and W matrices, both of which account for systematic variation.  We also added 

conditions for different levels of explanatory power in explaining the sources of DIF by 

adding residual variability to the DIF.  As a result, estimates of feature effects were 

unbiased for all conditions, and RMSEs were within reasonable ranges even for the most 

unfavorable conditions (small R2 value, high level of feature confounding, all features 

having large variability).  The best result (i.e., smallest RMSE) was obtained when 

random noise was small (R2 = .7), when the features were not confounded, and when only 

one feature had large variability.  RMSEs tended to increase as random noise became 

larger, the confounding level became higher, and more features had large variability.  

Among the three simulation factors, the most dramatic changes were made by the level of 

confounding. 

The results are promising about the performance of IFM for group-level diagnosis 

because even in the worst conditions estimates of feature effects were unbiased and the 

RMSEs did not steeply increase.  Among the three simulation factors, the feature 

confounding level, which caused the most dramatic changes in RMSEs, may be 

manipulated by the researchers who choose to use IFM as a model to obtain cross-group 

skill profiles.  When simulating the conditions, the high confounding level was simulated 
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by manipulating the Jaccard index to be .8 for two binary features, which means both 

features are present 80% of the time either feature is present.  In real data analyses, this 

high level of confounding will lead researchers to suspect that the two features are almost 

identical, and one of the features may be removed from the analyses.  By removing high 

confounding features, the accuracy of recovering feature effects will increase substantially.  

It is also worth noting that only a small amount of random noise can dramatically decrease 

R2 values because systematic variation is also small, which may be the reason for the 

similarities between the two explanatory power conditions.  In real data analyses, even an 

R2 value of .3 may be too high (R2 value of the TIMSS data was about .17); however, the 

conclusion from the simulation analyses can be extended to the smaller explanatory power 

conditions since a small amount of random noise can significantly drop the value of R2. 

The IFM is a confirmatory method that uses the prespecified Q matrix to diagnose 

group-level skill profiles.  The results of this study will not only apply to the performance 

of the IFM but also to that of any group-level diagnostic methods based on Q matrix.  For 

example, we may deduce that feature confounding may have a greater impact on the 

performance of Q matrix-based group-level diagnostic methods.  This is also a limitation 

of the IFM from a methodologist’s point of view.  Since the performance of the IFM is 
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largely influenced by the specification of item feature incidences but the specification is 

conducted by item experts, the performance of the method, as a result, relies largely on item 

experts. 

In education, useful information may often be obtained by comparing groups, and 

educational policy makers often require evidence based on group-level diagnosis (e.g., 

Tatsuoka, Corter, and Tatsuoka, 2004).  Assessments such as the TIMSS, the NAEP, the 

Progress in International Reading Literacy Study (PIRLS), or the Programme for 

International Student Assessment (PISA) are all designed to facilitate comparisons among 

units above the student level, and are all good sources of information for group-level 

diagnostic inferences.  Further study is needed to better understand the suggested model’s 

performance on the TIMSS data, as well as to shed light on how to analyze general group-

level diagnostic assessment data and what to expect from such analyses. 
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Table 1. Upper triangular Jaccard index matrices for three levels of confounding 

 
1-1. No confounding 

 q1 q2 q3 q4 q5 

q1 1.00 .00 .00 .00 .00 
q2  1.00 .00 .00 .00 
q3   1.00 .00 .00 
q4    1.00 .00 
q5     1.00 

 
 
1-2. Medium confounding 

 q1 q2 q3 q4 q5 

q1 1.00 .33 .33 .33 .33 
q2  1.00 .33 .33 .33 
q3   1.00 .33 .33 
q4    1.00 .33 
q5     1.00 

 
 
1-3. High confounding for two features with medium confounding for other features 

 q1 q2 q3 q4 q5 

q1 1.00 .80 .46 .46 .46 
q2  1.00 .46 .46 .46 
q3   1.00 .33 .33 
q4    1.00 .33 
q5     1.00 
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Table 2. Variability of features in W matrix 
 
2-1. One feature with large variability 
 

Features 
Countries 

q1 q2 q3 q4 q5 

1 0.48 -0.12 -0.12 -0.12 -0.12 
2 0.56 -0.14 -0.14 -0.14 -0.14 
3 -0.72 0.18 0.18 0.18 0.18 
4 -0.48 0.12 0.12 0.12 0.12 
5 0.64 -0.16 -0.16 -0.16 -0.16 
6 -0.72 0.18 0.18 0.18 0.18 
7 0.56 -0.14 -0.14 -0.14 -0.14 
8 -0.64 0.16 0.16 0.16 0.16 
9 -0.40 0.10 0.10 0.10 0.10 
10 0.72 -0.18 -0.18 -0.18 -0.18 
11 -0.64 0.16 0.16 0.16 0.16 
12 0.56 -0.14 -0.14 -0.14 -0.14 
13 0.40 -0.10 -0.10 -0.10 -0.10 
14 -0.72 0.18 0.18 0.18 0.18 
15 0.40 -0.10 -0.10 -0.10 -0.10 
      

var(w) 0.37 0.02 0.02 0.02 0.02 
SD(w) 0.61 0.15 0.15 0.15 0.15 
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2-2. Two features with large variability 
 

Features 
Countries 

q1 q2 q3 q4 q5 

1 0.62 -0.68 0.02 0.02 0.02 
2 0.72 -0.78 0.02 0.02 0.02 
3 -0.88 0.82 0.02 0.02 0.02 
4 -0.64 0.76 -0.04 -0.04 -0.04 
5 0.78 -0.72 -0.02 -0.02 -0.02 
6 -0.88 0.82 0.02 0.02 0.02 
7 0.70 -0.70 0.00 0.00 0.00 
8 -0.78 0.72 0.02 0.02 0.02 
9 -0.54 0.66 -0.04 -0.04 -0.04 
10 0.88 -0.82 -0.02 -0.02 -0.02 
11 -0.82 0.88 -0.02 -0.02 -0.02 
12 0.68 -0.62 -0.02 -0.02 -0.02 
13 0.52 -0.58 0.02 0.02 0.02 
14 -0.88 0.82 0.02 0.02 0.02 
15 0.52 -0.58 0.02 0.02 0.02 
      

var(w) 0.58 0.58 0.00 0.00 0.00 
SD(w) 0.76 0.76 0.02 0.02 0.02 
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2-3. Three features with large variability 
 

Features 
Countries 

q1 q2 q3 q4 q5 

1 0.96 -0.44 -0.64 0.06 0.06 
2 0.44 0.24 -0.56 -0.06 -0.06 
3 -0.90 0.40 0.50 0.00 0.00 
4 -0.42 -0.42 0.88 -0.02 -0.02 
5 0.98 -0.72 -0.42 0.08 0.08 
6 0.32 0.62 -0.58 -0.18 -0.18 
7 -0.50 -0.40 0.90 0.00 0.00 
8 -0.38 0.72 -0.38 0.02 0.02 
9 0.38 -0.62 0.68 -0.22 -0.22 
10 -0.80 0.90 -0.30 0.10 0.10 
11 -0.56 -0.66 0.74 0.24 0.24 
12 -0.42 0.88 -0.42 -0.02 -0.02 
13 0.82 -0.38 -0.48 0.02 0.02 
14 -0.36 0.74 -0.46 0.04 0.04 
15 0.44 -0.86 0.54 -0.06 -0.06 
      

var(w) 0.42 0.43 0.37 0.01 0.01 
SD(w) 0.65 0.65 0.61 0.11 0.11 
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2-4. Four features with large variability 
 

Features 
Countries 

q1 q2 q3 q4 q5 

1 0.60 -0.70 0.80 -0.70 0.00 
2 0.72 -0.78 0.92 -0.78 0.02 
3 -0.86 0.84 0.64 -0.56 0.04 
4 -0.66 0.74 0.54 -0.76 -0.06 
5 0.80 -0.70 -0.90 0.80 0.00 
6 -0.86 0.84 -0.56 0.84 0.04 
7 0.64 -0.66 0.74 -0.76 0.04 
8 -0.80 0.70 -0.90 0.80 0.00 
9 -0.52 0.68 0.48 -0.62 -0.02 
10 0.84 -0.86 0.54 -0.76 -0.06 
11 -0.80 0.90 -0.80 0.70 0.00 
12 0.70 -0.60 -0.90 0.80 0.00 
13 0.56 -0.64 -0.84 0.86 -0.04 
14 -0.90 0.80 -0.50 0.70 0.00 
15 0.54 -0.56 0.74 -0.56 0.04 
      

var(w) 0.57 0.59 0.58 0.58 0.00 
SD(w) 0.76 0.77 0.76 0.76 0.03 
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2-5. Five features with large variability 
 

Features 
Countries 

q1 q2 q3 q4 q5 

1 0.98 -0.42 -0.62 0.68 -0.62 
2 0.54 0.34 -0.86 0.74 -0.76 
3 -0.88 0.42 0.52 -0.88 0.82 
4 -0.42 -0.52 0.78 -0.62 0.78 
5 0.90 -0.50 -0.50 0.80 -0.70 
6 -0.46 0.84 -0.36 -0.86 0.84 
7 0.28 -0.62 0.68 0.48 -0.82 
8 -0.36 0.74 -0.36 -0.76 0.74 
9 -0.46 -0.46 0.84 -0.56 0.64 
10 -0.30 0.80 -0.60 0.90 -0.80 
11 -0.90 0.40 0.40 -0.80 0.90 
12 -0.44 0.86 -0.44 0.66 -0.64 
13 0.88 -0.32 -0.72 0.68 -0.52 
14 -0.36 0.74 -0.36 -0.86 0.84 
15 0.44 -0.86 0.64 0.44 -0.66 
      

var(w) 0.42 0.40 0.38 0.57 0.60 
SD(w) 0.64 0.63 0.62 0.75 0.77 

 
 



  Group-Level Diagnosis 29

Table 3. Mean biases of estimated feature weights 

 

R-squared = .70 R-squared = .30 
Number of 
Features 

Having Large 
Variability 

No 
Confounding 

Medium 
Confounding

High 
Confounding

No 
Confounding

Medium 
Confounding 

High 
Confounding

1 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 4. RMSEs of estimated feature weights 

 

R-squared = .70 R-squared = .30 
Number of 
Features 

Having Large 
Variability 

No 
Confounding 

Medium 
Confounding

High 
Confounding

No 
Confounding

Medium 
Confounding 

High 
Confounding

1 0.05 0.19 0.25 0.14 0.20 0.26 
2 0.11 0.25 0.32 0.24 0.25 0.34 
3 0.11 0.23 0.28 0.26 0.25 0.30 
4 0.14 0.27 0.34 0.36 0.30 0.37 
5 0.16 0.24 0.28 0.35 0.29 0.34 
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Figure 1. Normalization procedure for 5 feature effects and 15 countries 
 
 

 Feature 1 

Feature 2 

Feature 3 

Feature 4 

Feature 5 

 Feature 1 

Feature 2 

Feature 3 

Feature 4 

Feature 5 

SU
M

 

Country 1 (Ref.) 0 0 0 0 0 Country 1 (Ref.) 0 

Country 2 0 Country 2 0 

Country 3 0 Country 3 0 

Country 4 0 Country 4 0 

Country 5 0 Country 5 0 

Country 6 0 Country 6 0 

Country 7 0 Country 7 0 

Country 8 0 Country 8 0 

Country 9 0 Country 9 0 

Country 10 0 Country 10 0 

Country 11 0 Country 11 0 

Country 12 0 Country 12 0 

Country 13 0 Country 13 0 

Country 14 0 Country 14 0 

Country 15 0 

Unnormalized 

feature effects 

Country 15 

Normalized feature 

effects 

0 

      

Normalization
→ 

SUM 0 0 0 0 0 0 
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Figure 2. Steps to generate difficulty parameters for the countries 
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Figure 3. Mean RMSEs of feature weights for different levels of feature confounding as the 

number of features having large variability changes when R2 = .70 
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Figure 4. Mean RMSEs of feature weights for different levels of feature confounding as the 

number of features having large variability changes when R2 = .30 
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